- Услуги
- Цена и срок
- О компании
- Контакты
- Способы оплаты
- Гарантии
- Отзывы
- Вакансии
- Блог
- Справочник
- Заказать консультацию
В процессе эксплуатации метрологические характеристики и параметры СИ претерпевают изменения. Эти изменения носят случайный монотонный или флуктуирующий характер и приводят к отказам, т. е. к невозможности СИ выполнять свои функции. Отказы делятся на неметрологические и метрологические.
Неметрологические отказы обусловлены причинами, не связанными с изменением MX СИ. Они носят главным образом явный характер, проявляются внезапно и могут быть обнаружены без проведения поверки.
Метрологические отказы вызваны выходом MX из установленных допустимых границ. Как показывают исследования, метрологические отказы происходят значительно чаще, чем неметрологические. Это обусловливает необходимость разработки специальных методов их прогнозирования и обнаружения. Метрологические отказы подразделяются на внезапные и постепенные.
Внезапный отказ характеризуется скачкообразным изменением одной или нескольких MX. Эти отказы в силу их случайности невозможно прогнозировать. Их последствия (сбой показаний, потеря чувствительности и т. п.) легко обнаруживаются в ходе эксплуатации прибора, т. е. по характеру проявления они являются явными. Особенность внезапных отказов — постоянство во времени их интенсивности. Это дает возможность применять для анализа этих отказов классическую теорию надежности. В связи с этим в дальнейшем отказы такого рода не рассматриваются.
Постепенный отказ характеризуется монотонным изменением одной или нескольких MX. По характеру проявления постепенные отказы являются скрытыми и могут быть выявлены только по результатам периодического контроля СИ. В дальнейшем рассматриваются именно такие отказы.
С понятием «метрологический отказ» тесно связано понятие метрологической исправности СИ. Под ней понимается состояние СИ, при котором все нормируемые MX соответствуют установленным требованиям. Способность СИ сохранять его метрологическую исправность в течение заданного времени при определенных режимах и условиях эксплуатации называется метрологической надежностью.
Специфика проблемы метрологической надежности состоит в том, что для нее основное положение классической теории надежности о постоянстве во времени интенсивности отказов оказывается неправомерным. Современная теория надежности ориентирована на изделия, обладающие двумя характерными состояниями: работоспособное и неработоспособное.
Постепенное изменение погрешности СИ позволяет ввести сколь угодно много работоспособных состояний с различным уровнем эффективности функционирования, определяемым степенью приближения погрешности к допустимым граничным значениям.
Понятие метрологического отказа является в известной степени условным, поскольку определяется допуском на MX, который в общем случае может меняться в зависимости от конкретных условий.
Важно и то, что зафиксировать точное время наступления метрологического отказа ввиду скрытого характера его проявления невозможно, в то время как явные отказы, с которыми оперирует классическая теория надежности, могут быть обнаружены в момент их возникновения. Все это потребовало разработки специальных методов анализа метрологической надежности СИ.
Надежность СИ характеризует его поведение с течением времени и является обобщенным понятием, включающим в себя стабильность, безотказность, долговечность, ремонтопригодность (для восстанавливаемых СИ) и сохраняемость.
РМГ 29—99 вводит еще понятие нестабильности СИ, отражающей изменение его MX за установленный интервал времени. Например, нестабильность нормального элемента характеризуется изменением его ЭДС за год (2 мкВ/год).
Безотказностью называется свойство СИ непрерывно сохранять работоспособное состояние в течение некоторого времени. Она характеризуется двумя состояниями: работоспособным и неработоспособным. Однако для сложных измерительных систем может иметь место и большее число состояний, поскольку не всякий отказ приводит к полному прекращению их функционирования.
Отказ является случайным событием, связанным с нарушением или прекращением работоспособности СИ. Это обусловливает случайную природу показателей безотказности, главным из которых является распределение времени безотказной работы СИ.
Долговечностью называется свойство СИ сохранять свое работоспособное состояние до наступления предельного состояния. Работоспособное состояние — это такое состояние СИ, при котором все его MX соответствуют нормированным значениям. Предельным называется состояние СИ, при котором его применение недопустимо.
После метрологического отказа характеристики СИ путем соответствующих регулировок могут быть возвращены в допустимые диапазоны. Процесс проведения регулировок может быть более или менее длительным в зависимости от характера метрологического отказа, конструкции СИ и ряда других причин. Поэтому в характеристику надежности введено понятие «ремонтопригодность».
Ремонтопригодность — свойство СИ, заключающееся в приспособленности к предупреждению и обнаружению причин воз никновения отказов, восстановлению и поддержанию его работо способного состояния путем технического обслуживания и ремон та. Оно характеризуется затратами времени и средств на восста новление СИ после метрологического отказа и поддержание его в работоспособном состоянии.
Процесс изменения MX идет непрерывно и независимо от того, используется ли СИ или оно хранится на складе. Свойство СИ сохранять значения показателей безотказности, долговечности и ремонтопригодности в течение и после хранения и транспортирования называется его сохраняемостью.
Прежде чем перейти к рассмотрению показателей, характеризующих метрологическую надежность СИ, необходимо выяснить характер изменения во времени его MX. Одной из основных форм поддержания СИ в метрологически исправном состоянии является его периодическая поверка. Она проводится метрологическими службами согласно правилам, изложенным в специальной нормативно-технической документации.
Периодичность поверки должна быть согласована с требованиями к надежности СИ. Поверку необходимо проводить через оптимально выбранные интервалы времени, называемые межповерочными интервалами (МПИ).
Момент наступления метрологического отказа может выявить только поверка СИ, результаты которой позволят утверждать, что отказ произошел в период времени между двумя последними поверками. Величина МПИ должна быть оптимальной, поскольку частые поверки приводят к материальным и трудовым затратам на их организацию и проведение, а редкие — могут привести к повышению погрешности измерений из-за метрологических отказов.
Межповерочные интервалы устанавливаются в календарном времени для СИ, изменение метрологических характеристик которых обусловлено старением и не зависит от интенсивности эксплуатации. Значения МПИ рекомендуется выбирать из следующего ряда: 0,25; 0,5; 1; 2; 3; 4; 5; 6; 9; 12; 6К месяцев, где К — целое положительное число. Для СИ, у которых изменение MX является следствием износа его элементов, зависящего от интенсивности эксплуатации, МПИ назначаются в значениях наработки.
При нахождении МПИ выбирается MX, определяющая состояние метрологической исправности СИ. В качестве таких характеристик, как правило, используются основная погрешность, среднее квадратичное отклонение случайной составляющей погрешности и некоторые другие. Если состояние метрологической исправности определяют несколько MX, то из них выбирается та, по которой обеспечивается наибольший процент брака при поверках.
Вопросу обоснованного выбора продолжительности МПИ посвящено большое число работ. В настоящее время существуют три основных пути их определения:
Выбор конкретного метода определения продолжительности МПИ зависит от наличия исходной информации о надежности и стабильности СИ. Первый способ является эффективным при условии, что известны показатели метрологической надежности. Наиболее полная информация такого рода содержится в моделях, описывающих изменение во времени MX средств измерений.
При известных параметрах моделей МПИ определяется моментом выхода погрешности за нормируемый для данного СИ допуск. Однако большой разброс параметров и характеристик процессов старения СИ приводит к большой погрешности расчета МПИ с помощью таких моделей.
Применение методов расчета МПИ, основанных на статистике скрытых и явных отказов, требует наличия большого количества экспериментальных данных по процессам изменения во времени MX СИ различных типов. Такого рода исследования весьма трудоемки и занимают значительное время. Этим объясняется тот факт, что опубликованных статистических данных о процессах старения приборов различных типов крайне мало.
В технических описаниях СИ, как правило, приводится средняя наработка до отказа, средний или гаммапроцентный ресурс и срок службы. Этого явно недостаточно для расчета МПИ.
Определение межповерочного интервала по экономическому критерию состоит в решении задачи по выбору такого интервала, при котором можно минимизировать расходы на эксплуатацию СИ и устранять последствия от возможных ошибок, вызванных погрешностями измерения.
Исходной информацией для определения МПИ служат данные о стоимости поверки и ремонта СИ, а также об ущербе от изъятия его из эксплуатации и от использования метрологически неисправного прибора. Основная сложность применения этого метода состоит в следующем. Затраты на ремонт и поверку СИ достаточно легко определяются по нормативным документам. В отличие от них потери из-за использования приборов со скрытым метрологическим отказом на практике, как правило, неизвестны. Приходится прибегать к приближенным моделям, описывающим затраты на эксплуатацию СИ со скрытыми метрологическими отказами в виде функции потерь того или иного вида.
Существуют также рекомендации для определения МПИ по экономическому критерию. Наиболее простым является метод, состоящий в произвольном назначении МПИ с последующей корректировкой его величины. В этом случае при минимальной исходной информации назначается первоначальный интервал, а результаты последующих поверок являются исходными данными для его корректировки.
Первый МПИ выбирается в соответствии с рекомендациями нормативных документов государственных и ведомственных метрологических служб. Последующие значения МПИ определяются путем корректировки первого интервала с учетом результатов проведенных поверок большого числа однотипных СИ. Данный метод рассмотрен в международном стандарте ИСО 10012—1, содержащем требования, гарантирующие качество измерительного оборудования.